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ABSTRACT 

The aim of this study is to investigate a data mining approach to 

help assess consequences of oil spills in the maritime 

environment. The approach under investigation is based on the 

visual detection of suspected oil droplets in the water column 

adjacent to the Deepwater Horizon oil spill. Our method detects 

particles in the water, classifies them and provides an interface for 

the visual display and detailed examination. The particles can be 

plankton, marine snow, oil droplets and more.  The focus of this 

approach is to generalize the methodology utilized for plankton 

classification using SIPPER (Shadow Imaging Particle Profiler 

and Evaluation Recorder). The SIPPER, which has been in use by 

marine scientists for the last decade, allows the timely extraction 

and identification of millions of images per deployment as 

scanned by its underwater sensor. It can be deployed at various 

depths.  In this paper, we report on the application of image 

processing and machine learning techniques to discern suspected 

oil droplets from plankton and other particles present in the water. 

We train the classifier on the data obtained during one of the first 

research cruises to the site of the Deepwater Horizon oil spill.   

Suspected oil droplets were visually identified in SIPPER images 

by an expert. The classification accuracy of the suspected oil 

droplets is reported and analyzed.  Our approach reliably finds oil 

when it is present.  It also classifies some particles (air bubbles 

and some marine snow), up to 2.8%, as oil in clear water.  You 

can reliably find oil by visually looking at the examples put in the 

oil class ordered by probability, in which case oil will be found in 

the first 10% of images examined. 

General Terms 

Algorithms, Measurement, Documentation, Performance, Design, 

Verification. 

Keywords 

Oil-droplet detection, images, classification, oil-spill, visual in-

flow, analysis, machine learning, support vector machine, 

plankton. 

1. INTRODUCTION 
The Deepwater Horizon Oil Spill is the biggest 

environmental disaster in the United States history and is the 

largest marine oil spill in the history of the oil industry [1]. The 

impact of the spill is still being evaluated with various estimates 

of the immediate damage, area affected, and longevity of its effect 

being generated [2]. Most of the studies are focused on the oil that 

has covered the surface of the ocean, addressing the fact that the 

oil-mixture is lighter than water and, thus, tends to float on its 

surface. However, there are many indications that after being 

affected by the chemicals aimed to disperse the oil compounds 

much of the oil has turned into neutrally buoyant oil droplets (see 

Figure 1) and has permeated the depths of the Gulf of Mexico [3]. 

The properties of such oil droplets have the potential to allow the 

particles to remain in the water for long periods of time, 

negatively affecting the marine habitat, fishing, and tourism 

industry.  

In this study, we evaluated a special platform, intended for 

plankton research, for the use of oil droplet detection in columns 

of sea water. Based on a proven record for plankton population 

classification, we undertook a study to assess how suitable this 

platform is for the current efforts to detect oil droplets suspected 

to be in the water. Researchers from the University of South 

Florida’s (USF) College of Marine Science collected image data 

during one of the first research cruises to the area affected by the 

Deepwater Horizon oil spill. The data represents images of 

particles of plankton along with suspected oil droplets. It is 

stressed here, that the oil droplets are only “suspected” as our data 

included only imagery, not physical samples of the water. 

However, based on the extensive experience of marine scientists 

involved in the manual examinations of the data it is believed that 

it is highly likely that the images represented oil droplets. The aim 

of this research is to evaluate the effectiveness of the use of image 

processing and machine learning techniques to process a large 

quantity of data obtained from our underwater research instrument 

to classify particles assuming the image data collected during the 

initial deployment indeed includes oil droplets. We are not aiming 

to draw any conclusions on the ecological meaning of the SIPPER 

data and presence of actual oil. However, this research may result 

in a vision-based method to assess the presence of such oil 

droplets in the water columns using the SIPPER tool. This paper 

briefly describes the hardware of the instrument used, the 

algorithmic process intended to discern suspected oil droplets 

from other plankton particles, and the results obtained on a dataset 

collected in the immediate vicinity of the oil spill, as well as on 



data from unaffected areas. We discuss our observations, 

limitations of the approach, and suggestions for further research. 

 

2. DESCRIPTION OF PLATFORM 
The instrument for plankton research, SIPPER [4], was 

developed by the Center of Ocean Technology at the University of 

South Florida for the purpose of monitoring the composition, 

distribution and size structure of plankton and other suspended 

particles in aquatic environments (see Figure 2). The SIPPER uses 

collimated LED illumination and a high speed line scan camera to 

continuously image particles and plankton as they pass through a 

10cm × 10cm sampling aperture [5, 6, 7]. A continuously 

scanning line scan camera captures images that are 10 cm in width 

and continuous in length (see Figure 3). All resolvable particles 

that enter the sampling tube are imaged and saved as a single large 

SIPPER file with concurrently collected environmental data such 

as temperature and depth embedded within it. A single 6 hour 

deployment can result in hundreds of thousands to millions of 

individual extracted particle images larger than 0.4 mm equivalent 

spherical diameter (ESD).  

Custom designed software, the Plankton Imaging 

Classification Extraction System (PICES), was developed to 

quickly extract, classify, manage and analyze these discrete 

plankton images. A database management subsystem within 

PICES allows management of the large amount of data generated 

by SIPPER. PICES provides quick retrieval and organization of 

data by multiple parameters, such as, cruise, deployment, depth, 

salinity, temperature, classes, date-time, etc. Use of PICES results 

in efficient and timely processing of collected data.  

The main modules of PICES incorporate image extraction, 

classification, active learning, feature selection, and parameter 

tuning. The PICES image extraction function is uniquely designed 

to process the continuously scanned imagery data generated by 

SIPPER, extracting individual plankton images and associated 

embedded environmental data. Feature vectors are computed for 

each image, which then gets automatically classified into user 

defined classes by a support vector machine (SVM) [8] built using 

training libraries maintained by the user. The classified images 

with their feature vectors and environmental data are then inserted 

into a database. The SVM learns from the expert-labeled images 

to recognize the class to which the unlabeled images will be 

assigned. Having trained such an SVM-based classifier it is 

possible to classify millions of images and determine the 

composition of the population of the plankton in the area where 

the data was collected.  

 

3. DESCRIPTION OF ALGORITHMS 
The algorithms used during processing of the data include those 

for image extraction, feature calculation, and image classification.  

PICES uses a simple algorithm to extract images of separate 

particles based on foreground-background segmentation and a 

connected components algorithm. After segmenting the image of 

a particle, a number of features are calculated/extracted and a 

feature vector is created. The features are used by a classification 

algorithm in order to assign a class label to the image.  

The PICES SVM classifier provides a confidence or probability 

value [9] for its selection and, thus, gives more flexibility in the 

process of final decision. As a supervised classifier, the SVM 

requires training data in order to learn to correctly label a 

particular particle-class from its appearance. The training dataset 

is created from data labeled by an expert. One of more marine 

scientists views the images from one or more cruises and/or 

deployments and labels (some of) them. One of the inherent 

disadvantages of an SVM is that it can only handle two-class 

problems. However, it can be extended to a multiple-class 

problem by using several strategies, for example one-versus-all or 

one-versus-one. In our algorithm we used a one-versus-one 

 

Figure 1. Suspected oil droplets found in the area of Deepwater Horizon oil spill 

  

 

Figure 2. SIPPER is being deployed for plankton research 

 

 

Figure 3. Interior view and optical layout of SIPPER 

 

 



strategy for every possible two-class combination by selecting the 

winning class using voting. Features for each pair of combinations 

were selected separately using a Binary Feature Selection (BFS) 

process described in [17]. 

4. DESCRIPTION OF FEATURES 
During its operation SIPPER records environmental data, such as 

water temperature, depth at which SIPPER was operating, oxygen 

concentration, salinity, and florescence. However, it was decided 

to use only image-related features as environmental data did not 

provide enough variety in our dataset. Some of the reasons for that 

are the following:  

• The depth sensor is always used. However, the oil dataset was 

collected only for certain depth columns. Hence, this may 

spuriously be used to indicate the presence of oil. 

• The salinity, oxygen, and florescence sensors were covered 

during the collection of the oil dataset because of the fear of being 

contaminated by oil. Thus, in the dataset collected in the vicinity 

of the oil spill the values for these features do not exist.  

• The temperature feature is not reliable because of the fact that 

the oil was only detected during one of the trips spanning a very 

limited time in relation to all possible range of temperatures in 

that region during the year. Thus, temperature might be chosen by 

the classifier to represent oil spuriously. Oil only occurred at a 

couple of temperatures, but could occur at any. Generally, this 

feature is useful because some plankton creatures may prefer a 

certain temperature during a certain season. 

Table 1 shows the image-related features that were used during 

the feature selection process. In total 93 features were used for 

describing the data. Those included 82 features which were 

previously designed for identifying the general plankton 

population. These features were mostly concerned with direct 

measurements (pixel count, intensity), geometric and boundary 

properties. Another 11 features were specifically designed to aid 

in detection of oil droplets. They were mostly concerned with the 

circularity of the shape of oil droplets and their texture properties. 

5. SVM PARAMETER TUNING AND 

FEATURE SELECTION 
In this work we used a one-versus-one strategy in order to 

implement a multi-class classifier. The primary reason for such a 

decision was the faster speed of training which is shown by some 

studies [12]. In this strategy, all SVM classifiers for all possible 

binary combinations of all classes are created. A class label is 

selected by a majority vote. In the case of a tie among classes, the 

probability parameter of SVM was used to select the class label.  

The feature selection process consisted of two steps: initial SVM 

parameter tuning and binary feature selection. The parameters 

(gamma, C, A) of the SVM are optimized by performing a grid-

search with a certain interval across the training dataset [13]. 
Using the SVM parameters determined in the first stage of the 

selection process, a binary class feature selection is performed 

using a wrappers approach [15, 16, 17]. Each specific 

combination of features and SVM parameters was evaluated using 

5-fold cross validation [13] and the classification accuracy on the 

training set was used to guide the selection process further. In 

cases, where the classification accuracy is equal for several 

evaluated sets, the correctness of probability (CPP) [9], the 

inherent SVM parameter, is used to rank the sets. 

6. DESCRIPTION OF DATA 
The data is image data collected by the SIPPER during one of the 

first research cruises to the area of the Deepwater Horizon (DWH) 

oil spill on May 5-16 2010 on the USF research vessel 

Weatherbird II. Data from three deployments was collected within 

Table 1. Image features used to classify particles present in the water 

Category Sub-Category Feature Count 

Moment Features [10] Binary 8 

Intensity weighted 8 

Edge pixels only 8 

Morphological  9 

Head/Tail Pixel counts of first quarter and last quarter 2 

Length vs. width 1 

Length 1 

Width 1 

Filled Area  1 

Convex Area  1 

Transparency Binary/Weighted 2 

Texture Using Fourier Transform [11] According to each frequency range 5 

Contour Fourier Average of Five Frequency Domains  5 

Hybrid combinations 15 

Intensity Histogram Without white space 7 

With white space 8 

Circularity Circularity, Equivalent Diameter, Eccentricity, ratios, etc 5 

Texture Intensity statistics, Smoothness, Uniformity, Entropy 6 

 



5km of the original site of the DWH platform on May 14 and May 

15. However, the ship was not allowed to get too close to the 

source of the spill per the Coast Guard’s interpretation of safety in 

the region. Anomalous semi-opaque spherical particles were 

manually detected in the SIPPER imagery in the upper 10 meters 

from these three deployments.  These particles were imaged in 

areas where oil was visibly observed at the sea surface during a 

time of relatively strong winds and building seas.  These 

conditions provide a possible mechanism by which surface oil 

could be mixed down into the water column. Based on that and 

because these particles were not observed in imagery collected in 

nearby waters where surface oil was not present, we labeled these 

particles as suspected oil droplets. They did not resemble other 

spherical particles that have been imaged by SIPPER such as fish 

eggs, sarcodine protists or air bubbles. Other cruises around this 

time resulted in the collection of data from the average plankton 

population in the Gulf not affected by the oil spill. The data from 

unaffected areas is used to assess the sensitivity of the approach to 

the presence of oil droplets and compare the distributions of 

particles between the areas. Results of such comparisons may be 

used for future studies of the ecological impact of the spill. 

Evaluation of the observed image data suggests that the water 

column contained mostly small particles.  Many smaller particles 

are found for each large particle encountered. Figure 4 shows the 

size distribution of particles found in the SIPPER images from the 

research cruise to the area affected by the oil spill. Size is the area 

in pixels of each particle. For this study, the dimensions of each 

pixel are approximately 27 m on each side.  

Particles that exceeded 100 pixels in total area were extracted. As 

seen in Figure 4, there were abundant small particles present, 

while larger particles were far less numerous. However, due to the 

lack of resolvable features for the smallest extracted particle 

images, only particles greater than 250 pixels in total area were 

classified by an expert.  It was decided to disregard all images 

smaller than 250 pixels to increase the accuracy of particle 

classification. Images of sizes > 250 pixels, according to our 

observations, contained enough texture and contour information to 

effectively differentiate among other classes.  

We created five datasets (see Table 2) to study the data from the 

area affected by the oil spill, as well as unaffected areas. For all 

datasets the number of classes was set to 36, which represented 

only major classes of particles with at least 20 instances each. 

Table 3 shows the categories of classes used in our study.  

The set of images, called Oil-Set Original, was obtained by 

selecting instances of particles that were of most interest to a 

marine scientist from the data obtained in the area affected by the 

spill. There were a number of selection criteria. First, the particles 

had to be identifiable in the sense that they had a high probability 

of being a particular plankton class or oil droplet. Second, since 

we were primarily interested in oil detection, oil droplets were a 

focus of the initial search and more likely to be labeled.  This 

labeling was done first after the cruise. Thus, this dataset does not 

represent a completely random choice of particles. Overall, the set 

is composed of 8537 particles which represented less than 0.5% of 

all data during the cruise to the affected area. The oil droplet class 

had 1072 instances, comprising 12.49% of all the particles in the 

dataset. The decision to label each particle was made based on a 

visual analysis of the particle with the knowledge available to the 

expert. 

The next two datasets were obtained from the data from the same 

cruise in the following manner. First, Oil Original Set was used to 

train an SVM classifier within PICES. The resulting classifier was 

used to classify all the data from the cruise. About 50,000 images 

that had a high confidence for the predicted class were viewed by 

an expert and given final class labels (which could be the same as 

the predicted class label). Some of the instances in this classified 

and validated data were part of the Oil Original Set, because it 

came from the same pool of raw data. Since our interest was 

mainly in oil detection, priority was given to the validation of oil 

droplet predictions. Out of 50,000 instances of classified and 

validated data about 20,000 of instances were oil droplets.  

Oil Original Replaced Set is a dataset which was obtained from 

Oil Original Set by replacing the 1072 oil droplets with oil 

droplets randomly selected from the set of classified and validated 

data as described above. The Oil Original Replaced Set has the 

Table 2. Datasets used in experiments 

Dataset Identifier Particles total Oil droplets 

Oil Original Set 8536 1072 

Oil Original Replaced Set 8536 1072 

Oil Large Test Set 43816 13858 

Non-Oil Set 6745 0 

Oil Random Set 13678 79 
 

Table 3. Categories of classes of particles used in experiments 

Category of classes of particles # of classes in category 

Crustacean Copepod 5 

Crustacean Eumalacostracan 3 

Detritus (including oil droplet) 5 

Echinoderm 1 

Elongate 2 

Fish 1 

Gelatinous 8 

Mollusc 2 

Noise 2 

Phytoplankton 1 

Protist 5 

Radiolarian 1 

TOTAL 36 
 

 

Figure 4.  Size distribution of particles in the flow of water 

according to their size in pixels during the research cruise to 

the area of DWH oil spill. 
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same number of instances as Oil Original Set, but with more a 

diverse oil population because of the random choice of oil droplet 

samples. 

Oil Large Test Set was obtained by including all predicted and 

validated data that passed through the following filters. Instances 

of the data that are a part of Oil Original Set were removed. 5000 

images of oil droplets, selected randomly, were removed for 

future use for validation. Another 1072 oil droplets used for 

building Oil Original Replaced Set were removed as well. In 

summary, Oil Large Test Set had 36 classes, 43816 images total, 

of which 13858 were oil droplets. 

Oil Random Set was created in a different manner. Instances of all 

particles in the set were randomly selected from the data from the 

cruise to the areas affected by the spill, not just by selecting 

particles of interest. The particles in the set were assigned the 

appropriate class based on visual analysis. Thus, this dataset has 

approximately the same distribution as the real distribution of 

particles in the water during that deployment.  

Datasets Oil Set Original, Oil Large Test Set and Oil Random Set 

did not intersect. Datasets Oil Set Original and Oil Set Original 

Replaced intersected for instances of all classes except oil 

droplets. 

The last dataset, Non-Oil Set, contains data that was collected 

during other cruises to areas unaffected by the BP oil spill. This 

data was collected from several locations in the Gulf of Mexico as 

well as the Caribbean Sea in 2010. The experiments conducted on 

this data were designed to test the classifiers sensitivity to oil 

droplets, i.e. detection of oil when no oil is present. The dataset 

had 6745 particles belonging to 36 classes (the class oil droplet 

had 0 instances, i.e. did not occur). 

7. EXPERIMENTS 
In our experiments we report the accuracy of classification in the 

form of a 2x2 confusion matrix, as if we were doing binary 

classification, although the setup of experiment itself was not 

binary. One class was the oil droplet class – particles of particular 

interest for this research. The category ‘other’ represents the 

classification of all other particles compared against oil droplet. 

Thus, every prediction in favor of one of the other 36 classes of 

the datasets is summarized into the ‘other’ category.  We do not 

report the accuracy among the 36 non-oil classes. 

A Binary Feature Selection process was performed to select 

features for each of the 630 binary SVM classifiers that comprised 

our one-stage classifier for 36 classes. Table 4 shows the 

performance of the classifier using 10-fold cross validation on the 

Oil Original Set. 90% the oil was identified with a less than 2% 

false positive rate.    Table 5 shows the results of a 10-fold cross-

validation on the Oil Original Replaced Set. The accuracy and 

false positive rate in that experiment was improved, correctly 

identifying 95% of the oil with a 1.15% false positive rate. In all 

other experiments we report the performance of two classifiers, 

first trained on the Oil Original Set (called Classifier I) and 

second trained on Oil Original Replaced Set (called Classifier II) 

to compare their sensitivity and specificity. 

The two classifiers were created and then applied to make 

classifications on the Oil Large Test Set, Non Oil Set, and Oil 

Table 4. Performance of single-stage classifier. 10-fold 

cross validation on Oil Original Set 

Oil droplet detection accuracy: 90.95% 

    
Absolute Performance:   
 Oil droplet Other Count: 

Oil droplet:  975 97 1072 
Other 104 7360 7464 
Total: 1079 7457 8536 

    
Relative Performance:   
 Oil droplet Other  
Oil droplet:  90.95% 9.05%  
Other 1.39% 98.61%  

  

 Table 5. Performance of single-stage classifier. 10-fold cross 

validation on Oil Original Replaced Set 

Oil droplet detection accuracy:  95.80%  

    
Absolute performance:   
  Oil droplet Other Count: 

Oil droplet 1027 45 1072 
Other 86 7378 7464 
Total: 1113 7423 8536 

    
Relative Performance     
  Oil droplet Other  
Oil droplet 95.80% 4.20%  
Other 1.15% 98.85%  

 

Table 6. Performance of classifier. Tested on Oil Large Test 
Set, Trained on Oil Original Set. 

Oil droplet detection accuracy: 92.67%   

        
Absolute performance:  
  Oil droplet Other Count 

Oil droplet 12842 1016 13858 
other 1324 28634 29958 
Total 14166 29650 43816 

        
Relative Performance:   
  Oil droplet Other   
Oil droplet 92.67% 7.33%  
Other 4.42% 95.58%   

 

 

 Table 7. Performance of classifier. Tested on Oil Large Test 

Set, trained on Oil Original Replaced Set. 

Oil droplet detection accuracy: 94.20%  

    
Absolute performance:  
  Oil droplet Other Count 

Oil droplet 13054 804 13858 
other 820 29138 29958 
Total 13874 29942 43816 

    
Relative Performance:   
  Oil droplet Other  
Oil droplet 94.20% 5.80%  
Other 2.74% 97.26%  

 

 



Random Set. The results for these experiments are shown in 

Tables 6-11. 

For both cases of cross-validation (shown in Tables 4 and 5) the 

detection rate of oil droplets is above 90%. Cross Validation on 

the Oil Original Replaced Set showed a better detection rate with 

the true negatives comprising only half as many instances as in 

the cross validation of Oil Original Set. Such performance can be 

explained by the fact that the oil droplets in the Oil Original 

Replaced Set are likely more varied in their appearance.   The 

original set of oil droplets included those that were most clear to 

the expert.  Hence, when you look at them we can expect that they 

appear quite homogeneous with minimal variation, so they could 

be sure of the label. 

For the largest of our test sets, Oil Large Test Set, Classifier I 

achieved a detection rate of 92.67%, and the Classifier II achieved 

94.20%. The false positive rates were 4.42% and 2.74% 

correspondingly (see Tables 6 and 7). Thus, the Classifier II 

shows better performance for both accuracy of detection and false 

positive rate. A similar performance in relation to the false 

positive rate was observed in experiments with the Non Oil Set 

(see Tables 8 and 9). Classifier II had a false positive rate of 

2.79% as opposed to 7.62% using Classifier I. A greater 

performance difference between Classifier I and Classifier II was 

observed while testing on Oil Random Set. The detection rate for 

oil droplets with Classifier I was 75.95% and the false positive 

rate was 5.08% (see Table 10). The detection rate with Classifier 

II was 10% lower in this case, 65.82%, with about one third as 

many false positives,  1.48% (see Table 11).  Overall, the 

detection rate was lower for the Oil Random Set, than in all 

previous test cases.  

Because of the way the Oil Random Set was built, it had a 

distribution of particles similar to the one expected to be in the 

water near the oil spill. In examining the current SIPPER data, 

one finds the percentage of oil droplets in the dataset was about 

0.5%. The false positive rate for both classifiers was always 

higher (1.15-7%). Thus, for regular SIPPER data, it is not yet 

possible to automatically verify presence of oil droplets in water 

with the currently built classifiers.  

So, we took the class predictions from Classifier II on the Oil 

Random Set and extracted probabilities for them from modified 

version of libsvm [17].  We then ranked the examples classified as 

oil by probability from highest to lowest.  Figure 5 shows a plot of 

this.  We can see that the number of oil droplets is always between 

11 and 25% of the predicted oil.  The good news is that if an 

expert looks at the images classified as oil, they will find some oil 

in the top 10% and top 20% of the classifications (see Figure 6).  

If they were to randomly search through images with 0.5% oil 

when there is oil they would need to look at 200 examples to find 

one oil sample.  They will find 4 in the first 25 examined with our 

tool.  So, the user can quit looking if no oil is found in the first 50 

or so images that are highly ranked by probability of being oil. 

Now, it is clear from looking at Figures 5 and 6 that many of the 

top probability “oil droplets” are, in fact, not oil.  Air bubbles and 

marine snow can look very similar.   In Figure 6, we see that the 

non-oil images are a little more elliptical in shape.  However, oil 

Table 8. Performance of classifier. Testing on Non Oil Set 

when trained on Oil Original Set. 

False positive rate: 7.62%   

        

Absolute performance:  
  Oil droplet Other Count: 

Oil droplet 0 0 0 
Other 514 6231 6745 
Total: 514 6231 6745 

        
Relative Performance :  
  Oil droplet Other   
Oil droplet 0.00% 0.00%  
Other 7.62% 92.38%   

 

 Table 9. Performance of classifier. Testing on Non Oil Set 

when trained on Oil Original Replaced Set. 

False positive rate: 2.79%  

    

Absolute performance:  
  Oil droplet Other Count: 

Oil droplet 0 0 0 
Other 188 6557 6745 
Total: 188 6557 6745 

    
Relative Performance :  
  Oil droplet Other  
Oil droplet 0.00% 0.00%  
Other 2.79% 97.21%  

 

Table 10. Performance of classifier. Tested on Oil Random 

Set, trained on Oil Original Set. 

Oil droplet detection accuracy: 75.95%   

        
Absolute performance:  
  Oil droplet Other Count 

Oil droplet 60 19 79 
Other 691 12908 13599 
Total 751 12927 13678 

        
Relative Performance :  
  Oil droplet Other   
Oil droplet 75.95% 24.05%  
Other 5.08% 94.92%   

 

 Table 11. Performance of classifier. Tested on Oil Random 

Set, trained on Oil Original Replaced Set. 

Oil droplet detection accuracy: 65.82%  

    
Absolute performance:  
  Oil droplet Other Count 

Oil droplet 52 27 79 
Other 201 13398 13599 
Total 253 13425 13678 

    
Relative Performance :  
  Oil droplet Other  
Oil droplet 65.82% 34.18%  
Other 1.48% 98.52%  

 

 



does not have to be perfectly spherical as we can see from Figure 

1.  Reviewing the features selected for each individual binary 

SVM classifier that comprised this single-stage classifier it was 

confirmed that the most important features used to discriminate 

the oil droplet class from others were related to the circularity of 

the shape, and the texture of the particle.  However, it turned out it 

is not quite enough for completely automatic oil detection. 

8. DISCUSSION 
The analysis of the particles which are confused with oil the most 

suggests that there are only three major classes that have an 

appearance similar to oil droplets: detritus snow, noise bubbles, 

and protist lopsided. It is possible that a two-stage classifier will 

allow fully automatic detection of oil droplets in water near the 

spill. The first stage of the classifier would be aimed at sensitivity 

to oil droplets, while producing many false positives. The second 

stage of the classifier aims at specificity to oil droplets. This setup 

is reported to be useful to detect very rare events and in the case 

many features which are costly to compute [18]. Certain 

improvements can be also made in relation to features used to 

discriminate between the most confused classes. Circularity 

features were found very useful to discriminate oil droplets, which 

are often circular in shape, from many plankton organisms. 

However, those features are not particularly useful with other 

classes showing circularity – noise bubbles and marine snow. 

Further, we have found that our experts use depth to help them 

classify oil.  We have not used this feature because many of the 

non-image features such as temperature and salinity were no good 

due to precautions made to protect the SIPPER instrument against 

damage from any encountered oil. 

9. CONCLUSIONS 
Overall, a trained SVM achieved a high detection rate for oil 

droplets. When tested on Oil Large Test Set, consisting of 43816 

particles of which 13858 were oil, the accuracy of detection was 

about 95% which is comparable to the cross validation test on the 

training set. The false positive rate was less than 3% in all 

experiments with Classifier II, which was trained on a random 

selection of oil examples.  We did an experiment with a randomly 

chosen test set whose distribution mimicked what would be 

expected during the cruise (about 0.5% oil).  For that dataset oil 

droplet detection was just 65%. It is also the case that in water 

where there is no oil, our classifiers will predict that a small 

amount of oil exists. 

We showed that by using probabilities for the class predictions 

and ordering them from highest to lowest, oil will regularly 

appear in the top 10-30% of data.  So, if an expert uses our tool, 

PICES, to view the images that are predicted to be oil they will be 

 

Figure 5. Percentage of oil droplets in the predictions when sorted by probability of being oil.  So, 10% means the 25 highest 

probability predictions for oil of which 4 are actually oil.  This is with Classifier II applied to the oil random dataset with 

results shown in Table 11. 
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Figure 6. Top 30 particles classified as oil droplets when sorted by the probability. Particles number 3, 8, 23, 27, 28 are 

suspected oil droplets. Particle number 18 is detritus snow. The others are noise bubbles 
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able to reliably find it much quicker than randomly searching 

through particles. 

There is room for improved oil detection to enable the best 

analysis of how much oil is in the water.  This will occur through 

classifier tuning/replacement and new features.  The current 

results are promising in terms of finding oil under the water and 

getting a general count of the number of oil droplets. 

 

10. ACKNOWLEDGEMENT 
This works was supported by Baseline for Impact Assessment of 

Zooplankton and Imaging Oil Droplet Detection on West Florida 

Shelf, BP/FIO - Gulf Oil Spill Prevention, Response and 

Recovery Grants Program.  

 

11. REFERENCES 
[1] Deepwater Horizon Unified Command, US Scientific Teams 

Refine Estimates of Oil Flow from BP's Well Prior o 

Capping, Gulf of Mexico Oil Spill Response 2010; available 

from: 

www.deepwaterhorizonresponse.com/go/doc/2931/840475 

[2] Camilli, R. Reddy, C.M. Yoerger, D.R. Van Mooy, B.A.S. 

Jakuba, M.V., Kinsey, J.C. McIntyre, C.P., Sylva, S.P. and 

Maloney, J.V., “Tracking hydrocarbon plume transport and 

biodegradation at Deepwater Horizon”, Science, v.330, 

n.6001, pp.201, 2010  

[3] Dykes, B.M.,”Researchers find thick patches of crude still on 

Gulf floor”, Yahoo News. Retrieved on 2011-04-26 

[4] Samson S., Hopkins, T., Remsen, A., Langebrake, L.,   

Sutton, T., and Patten, J., “A System for High-Resolution 

Zooplankton Imaging” , IEEE Journal of Oceanic 

Engineering, vol. 26, no. 4, October 2001 

[5] Remsen, A., Hopkins, T., and Samson, S., “What You See is 

Not What You Catch: A Comparison of Concurrently 

Collected Net, Optical Plankton Counter, and Shadowed 

Image Particle Profiling Evaluation Recorder Data from 

Northeast Gulf of Mexico”, Deep Sea Research Part I: 

Oceanographic Research Papers, vol. 51, no. 1, pp. 129-151, 

2004 

[6] Remsen, A., Samson, S., Hopkins, T., and Kramer, K., 

“Observations of Plankton and Detrital Particle Distribution 

on the West Florida Shelf using SIPPER-2 and an Automated 

Classification System”, Journal of Plankton Research, 

submitted 2010 

[7] Remsen, A., “Evolution and field application of a plankton 

imaging system”, Ph.D. Dissertation, College of Marine 

Science, University of South Florida, 2008 

[8] Burges, C., “A Tutorial on Support Vector Machines for 

Pattern Recognition”, Data Mining and Knowledge 

Discovery, vol. 2, no. 2, pp. 121-167, June 1998 

[9] Platt J., “Probabilistic Outputs for Support Vector Machines 

and Comparison to Regularized Likelihood Methods” in 

Advances in Large Margin Classifiers, pp. 61-74, 

Cambridge, MA, USA, 1999 

[10] Hu, M.K., “Visual Pattern Recognition by Moment 

Invariants”, IRE Transactions on Information Theory, vol. 8, 

no. 2, pp. 179-187, 1962 

[11] Zhang, D. and Lu, G., “A Comparative Study on Shape 

Retrieval Using Fourier Descriptors with Different Shape 

Signatures”, Journal of Visual Communications and Image 

Representation, vol. 14, no. 1, pp. 41-60, 2003 

[12] Hsu, C.  and Lin C., “A Comparison of Methods for Multi-

Class Support Vector Machines”, IEEE Transactions on 

Neural Networks, vol. 13, no.2, pp. 415-425, March 2002 

[13] Witten, I. and Frank, E., “Data Mining: Practical Machine 

Learning Tools and Techniques”, Morgan Kaufmann 

Publishers, 2005 

[14] Staelin, C., “Parameter Selection for Support Vector 

Machines”, HP Laboratories Israel, Technion City, Haifa, 

2002 

[15] Kohavi, J.R. and George, H., “Wrappers for Feature Subset 

Selection”, Artificial Intelligence, vol. 97, no. 1., pp. 273-

324, December 1997 

[16] Silva, H. and Fred, A., “Pair wise vs. Global Multi-Class 

Wrapper Feature Selection” in Proceedings of the 6th 

Conference on 6th WSEAS Int. Conf. on Artificial 

Intelligence, Knowledge Engineering and Data Bases 

(AIKED’07), vol. 6, Corfu Island, Greece, 2007, pp. 1-6 

[17] Kurt, K., “System for Identifying Plankton from the SIPPER 

Instrument Platform”, Doctoral Dissertation, University of 

South Florida, 2010. 

[18] Senator, T.E., “Multi-stage classification”, Proceedings of 

the Fifth IEEE International Conference on Data Mining, 

2005 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


